IT disaster recovery, cloud computing and information security news

Researchers show how synthetic fingerprints can be created to bypass biometric security systems

Fingerprint authentication systems are a widely trusted, ubiquitous form of biometric authentication, deployed on billions of smartphones and other devices worldwide. Yet a new study from New York University Tandon School of Engineering reveals a surprising level of vulnerability in these systems. Using a neural network trained to synthesize human fingerprints, the research team evolved a fake fingerprint that could potentially fool a touch-based authentication system for up to one in five people.

Much the way that a master key can unlock every door in a building, these ‘DeepMasterPrints’ use artificial intelligence to match a large number of prints stored in fingerprint databases and could thus theoretically unlock a large number of devices. The research team was headed by NYU Tandon Associate Professor of Computer Science and Engineering Julian Togelius and doctoral student Philip Bontrager, the lead author of the paper, who presented it at the IEEE International Conference of Biometrics: Theory, Applications and Systems, where it won the Best Paper Award.

The work builds on earlier research led by Nasir Memon, professor of computer science and engineering and associate dean for online learning at NYU Tandon. Memon, who coined the term ‘MasterPrint’, described how fingerprint-based systems use partial fingerprints, rather than full ones, to confirm identity. Devices typically allow users to enrol several different finger images, and a match for any saved partial print is enough to confirm identity. Partial fingerprints are less likely to be unique than full prints, and Memon's work demonstrated that enough similarities exist between partial prints to create MasterPrints capable of matching many stored partials in a database. Bontrager and his collaborators, including Memon, took this concept further, training a machine-learning algorithm to generate synthetic fingerprints as MasterPrints.

The NYU Tandon researchers created complete images of these synthetic fingerprints, a process that has twofold significance. First, it is yet another step toward assessing the viability of MasterPrints against real devices, which the researchers have yet to test; and second, because these images replicate the quality of fingerprint images stored in fingerprint-accessible systems, they could potentially be used to launch a brute force attack against a secure cache of these images.

"Fingerprint-based authentication is still a strong way to protect a device or a system, but at this point, most systems don't verify whether a fingerprint or other biometric is coming from a real person or a replica," said Bontrager. "These experiments demonstrate the need for multi-factor authentication and should be a wake-up call for device manufacturers about the potential for artificial fingerprint attacks."

The paper, DeepMasterPrints: Generating MasterPrints for Dictionary Attacks via Latent Variable Evolution, is available at https://arxiv.org/pdf/1705.07386.pdf.



Want news and features emailed to you?

Signup to our free newsletters and never miss a story.

A website you can trust

The entire Continuity Central website is scanned daily by Sucuri to ensure that no malware exists within the site. This means that you can browse with complete confidence.

Business continuity?

Business continuity can be defined as 'the processes, procedures, decisions and activities to ensure that an organization can continue to function through an operational interruption'. Read more about the basics of business continuity here.

Get the latest news and information sent to you by email

Continuity Central provides a number of free newsletters which are distributed by email. To subscribe click here.